Summa sidvisningar

tisdag 16 oktober 2018

Linkkejä mikrobien sokerivaipasta ja mikrobien lektineistä ( adhesiinit)

 2018   Mikrobiaalinen glykaaniadheesio
Microbial glycan adhesion
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6027152/

2017 mikrobiaalisista lektiineistä
Microbial lectins
http://nizetlab.ucsd.edu/publications/Lectins-Chapter37.pdf  Microbial Lectins: Hemagglutinins,Adhesins, and Toxins
 Viruses, bacteria, fungi, and protozoa express an enormous array of glycan-binding proteins, also called lectins. Many of these microbial lectins were originally detected based on their ability to aggregate or induce the hemagglutination of red blood cells (erythrocytes). The first microbial hemagglutinin identified was isolated from the influenza virus, and it was shown by Alfred Gottschalk in the early 1950s to bind erythrocytes and other cells via the sialic acid component of host cell-surface glycoconjugates. Don Wiley and associates crystallized the influenza hemagglutinin and determined its structure in 1981. Later they solved the structure of hemagglutinin cocrystals bound to sialyllactose, providing molecular insight into the affinity and specificity of the receptor ligand binding sites. Since then, a number of viral hemagglutinins have been identified and structurally elucidated. Nathan Sharon and colleagues first described bacterial surface lectins in the 1970s. Their primary function is to facilitate the attachment or adherence of bacteria to host cells, a prerequisite for bacterial colonization and infection (Chapter 42). Thus, bacterial lectins are often called adhesins , and these bind corresbonding  glycan receptors on the surface of the host cells via carbohydrate-recognition domains (CRDs) (“receptor” in this case is equivalent to “ligand” for animal cell lectins). Like animal lectins, some microbial adhesins bind to terminal sugar residues via the CRD, whereas others bind to internal sequences found in linear or branched oligosaccharide chains. The interaction of adhesins with host glycans is an important determinant of the tropism of the corresponding pathogen or symbiont. Detailed studies of the specificity of such microbial lectins have led to the identification and synthesis of powerful inhibitors of adhesion that may form the basis for novel therapeutic agents to combat infectious disease
(Chapter 42

2017 N-glykaanivälitteinen adheesio vahvistuu  patogeenin ja reseptorin välisessä sitoutumisessa
 https://www.nature.com/articles/s41598-017-07220-w   N-glycan mediated adhesion strengthening during pathogen-receptor binding revealed by cell-cell force spectroscopy


fredag 12 oktober 2018

Legionella "opettamassa" inflammasomi biologiaa

https://www.ncbi.nlm.nih.gov/pubmed/27999148

J Leukoc Biol. 2017 Apr;101(4):841-849. doi: 10.1189/jlb.3MR0916-380R. Epub 2016 Dec 20.
Inflammasome biology taught by Legionella pneumophila.
Inflammasomes are multimeric protein complexes that assemble in the cytosol of many types of cells, including innate immune cells. The inflammasomes can be activated in response to infection or in response to stress signals that induce damage in the host cell membranes.

These platforms trigger inflammatory processes, cell death, and the control of microbial replication. Many inflammasomes have been described so far, including
  •  NLRP3,
  •  NAIP/NLRC4, 
  • caspase-11, and 
  • AIM2  (absent in n melanoma 2)
    Preferred Names
    interferon-inducible protein AIM2
The ligand for NLRP3 is still unidentified, but the efflux of K+ is essential for NLRP3 activation.

 By contrast, inflammasomes, such as those composed of NAIP/NLRC4, caspase-11, and AIM2, can be activated by bacterial flagellin, LPS, and dsDNA.

 The knowledge of inflammasome biology has advanced tremendously in the last decade, fostered by the use of model organisms, such as Legionella pneumophila This bacterium evolved, infecting unicellular protozoa in freshwater environments, and the human infection is accidental.
Thus, L. pneumophila did not evolve sophisticated mechanisms to inhibit mammalian innate immunity.

 For this reason, it has emerged as a very appropriate model of a pathogenic microbe for the investigation of inflammasome biology.

In this review, we highlight the current information regarding the biology of inflammasomes and emphasize the advances achieved using L. pneumophila

We also describe the inflammasomes activated in response to L. pneumophila infection and discuss the effector mechanisms that operate to clear the infection.

KEYWORDS:

AIM2;
ASC;
NLRC4;
 NLRP3;
 caspase-1;
 caspase-11
PMID:
27999148
DOI:
10.1189/jlb.3MR0916-380R
[Indexed for MEDLINE]

torsdag 11 oktober 2018

NOD reseptorit (NLR)

https://www.invivogen.com/review-nlr
NLR subfamilies

Legionella ja hahmontunnistajareseptorit TLR (Toll) ja NLR (Nod)

Etsin ensin NOD -kaltaisten  reseptorien ja Legionellan  yhteisiä artikkeleita ja niistä otan tähän sitaatin.
 (Mitä NOD reseptorit ja niiden kaltaiset reseptorit ovat?  Niistä on arikkeli mm tässä lähteessä: https://www.invivogen.com/review-nlr
Toll-reseptorit solupinnalla  tunnetaan tarkemmin niitä on ainakin 9.  Ne ovat patogeenin tai vaaran hahmontunnistaja reseptoreita.  Näitä NOD reseptoreita on tulehtuneen solun sisällä. NLR: 22 kpl). Koska  Legionella on solunsisällä replikoituva, etsin sen  suhteita NOD- reseptoreihin.   Löysin 21 viitettä.

Search results

Items: 1 to 20 of 21

1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017 May;33(5):601-605. Chinese. PMID:28502296
2.
Mallama CA, McCoy-Simandle K, Cianciotto NP.
Infect Immun. 2017 Mar 23;85(4). pii: e00897-16. doi: 10.1128/IAI.00897-16. Print 2017 Apr. PMID:28138020
3. Miksi useimmat ihmiset toipuvat Legionellasta? 

Tässä artikkelissa selvitetään, miten hiiri toipuu legionellasta luonnollisen immuniteetin avulla.
Park B, Park G, Kim J, Lim SA, Lee KM. Arch Pharm Res. 2017 Feb;40(2):131-145. doi: 10.1007/s12272-016-0859-9. Epub 2017 Jan 6. Review. PMID:28063015

Tiivistelmästä suomennosta.
 Legionella pneumophila on eräs etiologinen agenssi vaikeassa legionelloosi-keuhkotulehduksessa. Tämä gram-negatiivinen bakteeri replikoi luonnossa erilaisissa makeanveden ameeboissa, mutta myös ihmisen keuhkoalveolien makrofageissa. Isäntäsolun sisällä Legionella  indusoi  ei-endosomaalisten  replikaatiokykyisten  fagosomien  tuotannon injisoimalla  effektoriproteiinejaan  solun  sytosoliin .
 Luonnolliset immuunivasteet ovat eturintamapuolustusta  (=valmiina olevaa resurssia) Legionellaa vastaan infektion varhaisvaiheessa ja tekee eroa  Legionellan ja isäntäsolun välillä käyttämällä  taudinaiheuttajan hahmon tunnistavia (PAMP)  reseptoreita (PRR)  kuten TOLL-reseptorin (TLR)   tai NOD- reseptorin kaltaisia (NLR)  tai  tai RIG-1 kaltaisia reseptoreita ( RLR). Ne pystyvät havaitsemaan patogeeneihin liittyviä molekulaarisia hahmoja (PAMP), joita kehossa , isäntäsolussa itsessään ei ole.
Keuhkojen Legionella- tulehduksen aikana rekrytoituu keuhkoihin useita erilaisia tulehdussoluja kuten makrofageja, neutrofiilejä, luonnollisia tappajasoluja (NK) , suuria mononukleaarisia soluja , B-imusoluja ja T-imusoluja: sekä CD4+ että CD8+ T-lymfosyyttisoluja ja ensisijaisesti ne  asettuvat kudossolujen väleihin,  interstitiaalisesti,  kontrolloimaan Legionellaa.
Keuhkoissa  menossa olevissa Legionella-infektioissa myös eri sytokiinien ja kemokiinien  väliset vuorovaikutukset moduloivat isäntäkehon  immuunivastetta . NK-soluilla tapahtuvasta tunnistuksesta  liipaistuu esiin  kehon  omia effektorifunktioita kuten sytokiinien ja kemokiinien  erittymistä ja niistä aiheutuu kohteena olevien solujen  lyysi, hajoaminen.  NK- solujen,  dendriittisolujne, monosyyttien ja makrofagien  keskeinen  vuorovaikutus  antaa pääasiallisen  etulinjapuolustuksen Legionellaa vastaan, kun taas  spesifinen immuunivaste,  T- ja B-solujen aktivoituminen johtaa lopulta infektion  päättymiseen ja pystyttää Legionella-spesifistä muistijälkeä isäntäkehoon.
  • Abstract
  • Legionella pneumophila is an etiological agent of the severe pneumonia known as Legionnaires' disease (LD). This gram-negative bacterium is thought to replicate naturally in various freshwater amoebae, but also replicates in human alveolar macrophages. Inside host cells, legionella induce the production of non-endosomal replicative phagosomes by injecting effector proteins into the cytosol. Innate immune responses are first line defenses against legionella during early phases of infection, and distinguish between legionella and host cells using germline-encoded pattern recognition receptors such as Toll-like receptors , NOD-like receptors, and RIG-I-like receptors, which sense pathogen-associated molecular patterns (PAMP)  that are absent in host cells.
  • During pulmonary legionella infections, the interplay between distinct cytokines and chemokines also modulates innate host responses to clear legionella from the lungs. Recognition by NK cell receptors triggers effector functions including secretion of cytokines and chemokines, and leads to lysis of target cells. Crosstalk between NK cells and dendritic cells, monocytes, and macrophages provides a major first-line defense against legionella infection, whereas activation of T and B cells resolves the infection and mounts legionella-specific memory in the host.
4.
Yksi L. pneumophilan effektoreista on LegS2, SP1-lyaasi

 (Kommentti:  Tällainen entsyymikuuluu ihmisenkin Sfingomyeliiniaineenvaihdunnan terminaaliseen kohtaan membraani remodelling kierrossa ) . Lpn-mutantti, jolta tämä funktio puuttuu ilmentää isäntäkehossa atyyppisia mitokondrioita.  Bakterin effektori ilmeisesti pehmentää mitokondrian ulkokalvonrakennetta ja saa mitokondriat jopa fusoitumaan ja näyttämään amorfisilta).
  • The Sphingosine-1-Phosphate Lyase (LegS2) Contributes to the Restriction of Legionella pneumophila in Murine Macrophages. Abu Khweek A, Kanneganti A, Guttridge D DC, Amer AO.PLoS One. 2016 Jan 7;11(1):e0146410. doi: 10.1371/journal.pone.0146410. eCollection 2016. PMID: 26741365 L. pneumophila is the causative agent of Legionnaires’ disease, a human illness characterized by severe pneumonia. In contrast to those derived from humans, macrophages derived from most mouse strains restrict L. pneumophila replication. The restriction of L. pneumophila replication has been shown to require bacterial flagellin, a component of the type IV secretion system as well as the cytosolic NOD-like receptor (NLR) Nlrc4/ Ipaf. These events lead to caspase-1 activation which, in turn, activates caspase-7. Following caspase-7 activation, the phagosome-containing L. pneumophila fuses with the lysosome, resulting in the restriction of L. pneumophila growth. The LegS2 effector is injected by the type IV secretion system (T4SS) and functions as a sphingosine 1-phosphate lyase. It is homologous to the eukaryotic sphingosine lyase (SPL), an enzyme required in the terminal steps of sphingolipid metabolism. Herein, we show that mice Bone Marrow-Derived Macrophages (BMDMs) and human Monocyte-Derived Macrophages (hMDMs) are more permissive to L. pneumophila legS2 mutants than wild-type (WT) strains. This permissiveness to L. pneumophila legS2 is neither attributed to abolished caspase-1, caspase-7 or caspase-3 activation, nor due to the impairment of phagosome-lysosome fusion. Instead, an infection with the legS2 mutant resulted in the reduction of some inflammatory cytokines and their corresponding mRNA; this effect is mediated by the inhibition of the nuclear transcription factor kappa-B (NF-κB). Moreover, BMDMs infected with L. pneumophila legS2 mutant showed elongated mitochondria that resembles mitochondrial fusion. Therefore, the absence of LegS2 effector is associated with reduced NF-κB activation and atypical morphology of mitochondria. Free PMC Article Similar articles
5.
 Inflammasomi on multiproteiinikompleksi, johon kuuluu jäseninä NOD:n kaltianen reeptoriperhe(NLR) ja kaspaasi-1. 
Caspase-11 and caspase-1 differentially modulate actin polymerization via RhoA and Slingshot proteins to promote bacterial clearance. Caution K, Gavrilin MA, Tazi M, Kanneganti A, Layman D, Hoque S, Krause K, Amer AO. Sci Rep. 2015 Dec 21;5:18479. doi: 10.1038/srep18479. Inflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion. However, it is unclear how these proteases alter intracellular trafficking. Here, we show that caspase-11 and caspase-1 function in opposing manners to phosphorylate and dephosphorylate cofilin, respectively upon infection with Legionella. Caspase-11 targets cofilin via the RhoA GTPase, whereas caspase-1 engages the Slingshot phosphatase. The absence of either caspase-11 or caspase-1 maintains actin in the polymerized or depolymerized form, respectively and averts the fusion of pathogen-containing vacuoles with lysosomes. Therefore, caspase-11 and caspase-1 converge on the actin machinery with opposing effects to promote vesicular trafficking.
PMID:26686473 Free PMC Article
6.
NOD:in kaltainen reseptori  (NLR) ( nukleotidiä sitovan oligomerisaatiodomeenin omaava) ja CARD- domeenin (kaspaasia rekrytoivan domeenin) omaava NLRC4  reseptori  säätelee  aerosolisen Legionella pneumofilan keuhkonsisäistä replikoitumista. 
7.
 NOD-reseptorit  inflammasomissa, joka  on laaja kompleksi sytoplasmassa, tunnistaa  mikrobitulehduksen ja vaaran molekyylejä ja indusoi  kaspaasi-1-aktivaatiosta  riippuvan sytokiinituotannon ja makrofagin tulehduksellisen kuoleman ( bakteerimassan kanssa lyysissä). NLRC4 tunnistaa bakteeriflagelliinia ja T4SS sekreetiosysteemin.

  • The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus (T3SS).Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F.
    Nature. 2011 Sep 14;477(7366):596-600. doi: 10.1038/nature10510. PMID:21918512 Inflammasomes are large cytoplasmic complexes that sense microbial infections/danger molecules and induce caspase-1 activation-dependent cytokine production and macrophage inflammatory death. The inflammasome assembled by the NOD-like receptor (NLR) protein NLRC4 responds to bacterial flagellin and a conserved type III secretion system (TTSS) rod component. How the NLRC4 inflammasome detects the two bacterial products and the molecular mechanism of NLRC4 inflammasome activation are not understood. Here we show that NAIP5, a BIR-domain NLR protein required for Legionella pneumophila replication in mouse macrophages, is a universal component of the flagellin-NLRC4 pathway. NAIP5 directly and specifically interacted with flagellin, which determined the inflammasome-stimulation activities of different bacterial flagellins. NAIP5 engagement by flagellin promoted a physical NAIP5-NLRC4 association, rendering full reconstitution of a flagellin-responsive NLRC4 inflammasome in non-macrophage cells. The related NAIP2 functioned analogously to NAIP5, serving as a specific inflammasome receptor for TTSS rod proteins such as Salmonella PrgJ and Burkholderia BsaK. Genetic analysis of Chromobacterium violaceum infection revealed that the TTSS needle protein CprI can stimulate NLRC4 inflammasome activation in human macrophages. Similarly, CprI is specifically recognized by human NAIP, the sole NAIP family member in human. The finding that NAIP proteins are inflammasome receptors for bacterial flagellin and TTSS apparatus components further predicts that the remaining NAIP family members may recognize other unidentified microbial products to activate NLRC4 inflammasome-mediated innate immunity.Similar articles
8.
NOD-perheen reseptorista  NAIP5 inflammasomissa. Rajoittaa Legionellaa  ja tunnistaa  flagelliinia.
Global cellular changes induced by Legionella pneumophila infection of bone marrow-derived macrophages. Fortier A, Faucher SP, Diallo K, Gros P. Immunobiology. 2011 Dec;216(12):1274-85. doi: 10.1016/j.imbio.2011.06.008. Epub 2011 Jun 30. PMID:21794945
The nucleotide-binding oligomerization domain (Nod)-like receptor (NLR) family member Naip5 plays an essential role in restricting Legionella pneumophila growth inside primary macrophages. Upon interaction with bacterial flagellin, the intracellular receptor Naip5 forms a multi-protein complex, the inflammasome, which activation has a protective role against infection.
9.  
Legionella pneumophila  manipuloi  tehottomiksi kaksi isäntäkehon apoptoottista tietä:  sekä kanonisen apoptoottisen mitokondriaalisen tien  että  pyroptoottisen  NOD:in kaltaisten reseptorien kontrolloiman inflammasomisen tien. 
  • Striking a balance: modulation of host cell death pathways by legionella pneumophila.Luo ZQ. Front Microbiol. 2011 Feb 23;2:36. doi: 10.3389/fmicb.2011.00036. eCollection 2011.PMID: 21687427 Free PMC ArticleAbstract
    Programmed cell death is considered the ultimate solution for the host to eliminate infected cells, leading to the abolishment of the niche for microbial replication and the ablation of infection. Thus, it is not surprising that successful pathogens have evolved diverse strategies to reprogram the cell death pathways for their proliferation. Using effector proteins translocated by the Dot/Icm type IV secretion system, the facultative intracellular pathogen Legionella pneumophila manipulates multiple host cellular processes to create a niche within host cells to support its replication. Investigation in the past decade has established that in mammalian cells this bacterium actively modulates two host cell death pathways, namely the canonical apoptotic pathway controlled by the mitochondrion and the pyroptotic pathway controlled by the Nod-like receptor Naip5 and the Ipaf inflammasome. In this review, I will discuss the recent progress in understanding the mechanisms the bacterium employs to interfere with these host cell death pathways and how such modulation contribute to the intracellular life cycle of the pathogen.Similar articles
10. 
Lpn- infektiossa   ASC ja NLRC4 alassäätyneinä monosyyteissä. 
  • Apoptosis-associated speck-like protein (ASC) controls Legionella pneumophila infection in human monocytes. Abdelaziz DH, Gavrilin MA, Akhter A, Caution K, Kotrange S, Khweek AA, Abdulrahman BA, Grandhi J, Hassan ZA, Marsh C, Wewers MD, Amer AO.
    J Biol Chem. 2011 Feb 4;286(5):3203-8. doi: 10.1074/jbc.M110.197681. Epub 2010 Nov 19. PMID:21097506 The ability of Legionella pneumophila to cause pneumonia is determined by its capability to evade the immune system and grow within human monocytes and their derived macrophages. Human monocytes efficiently activate caspase-1 in response to Salmonella but not to L. pneumophila. The molecular mechanism for the lack of inflammasome activation during L. pneumophila infection is unknown. Evaluation of the expression of several inflammasome components in human monocytes during L. pneumophila infection revealed that the expression of the apoptosis-associated speck-like protein (ASC) and the NOD-like receptor NLRC4 are significantly down-regulated in human monocytes. Exogenous expression of ASC maintained the protein level constant during L. pneumophila infection and conveyed caspase-1 activation and restricted the growth of the pathogen. Further depletion of ASC with siRNA was accompanied with improved NF-κB activation and enhanced L. pneumophila growth. Therefore, our data demonstrate that L. pneumo phila manipulates ASC levels to evade inflammasome activation and grow in human monocytes. By targeting ASC, L. pneumophila modulates the inflammasome, the apoptosome, and NF-κB pathway simultaneously.Free PMC Article Similar articles
11.
PAMP reseptorit Nod1 ja Nod2  vastaavat neutrofiilien rekrytoimisesta  hiiren keuhkoon  legionella pneumophila-infektiossa.
12.
 Legionella pneumophilan lisääntyminen ihmissoluissa. Miksi ihminen on altis saamaan Legionella pneumophila-infektion? 
  • Replication of Legionella Pneumophila in Human Cells: Why are We Susceptible? Khweek AA, Amer A. Front Microbiol. 2010 Dec 28;1:133. doi: 10.3389/fmicb.2010.00133. eCollection 2010.PMID: 21687775 Abstract
    Legionella pneumophila is the causative agent of Legionnaires' disease, a serious and often fatal form of pneumonia. The susceptibility to L. pneumophila arises from the ability of this intracellular pathogen to multiply in human alveolar macrophages and monocytes. L. pneumophila also replicates in several professional and non-professional phagocytic human-derived cell lines. With the exception of the A/J mouse strain, most mice strains are restrictive, thus they do not support L. pneumophila replication. Mice lacking the NOD-like receptor Nlrc4 or caspase-1 are also susceptible to L. pneumophila. On the other hand, in the susceptible human hosts, L. pneumophila utilizes several strategies to ensure intracellular replication and protect itself against the host immune system. Most of these strategies converge to prevent the fusion of the L. pneumophila phagosome with the lysosome, inhibiting host cell apoptosis, activating survival pathways, and sequestering essential nutrients for replication and pathogenesis. In this review, we summarize survival mechanisms employed by L. pneumophila to maintain its replication in human cells. In addition, we highlight different human-derived cell lines that support the multiplication of this intracellular bacterium. Therefore, these in vitro models can be applicable and are reproducible when investigating L. pneumophila/phagocyte interactions at the molecular and cellular levels in the human host.KEYWORDS: NOD-like receptors; Toll-like receptors; neuronal apoptosis-inhibitory proteins; pathogen-associated molecular patterns Free PMC Article Similar articles
13
 Legionella pn.  moduloi kaspaaseja ja saa ne  toimimaan  ei-apoptoottisina. 
Legionella pneumofilasta on tullut mallijärjestelmä kaspaasien ei-apoptoottisten funktioiden  ja  immuunitehtävien  ratkaisemiseen.  Sallivissa soluissa Lpn-vakuolit (LCV)  välttävät endosomaalisia kuljetusteitä ja endoplasminen verkosto(ER)  muokaa vakuoleja  uuteen muotoon ( jossa replikaatio voi tapahtua). Endosomitien  evaasio välittyy Legionellan Dot/Icm- tyyppi4-sekreetiosysteemillä (T4SS). Lpn- infektiossa flagelliinia tunnistaa NOD:n kaltainen reseptori NLRC4 (IPAF) , mikä johtaa kaspaasi-1 aktivaatioon inflammasomikompleksissa.  NLRC4 inflammasomin alavirrassa aktivoituu kaspaasi-7 ja edistää ei-apoptoottisia funktioita, kuten fagosomin kypsymistä ja  bakteriaalista hajoittamista . On tehty  mielenkiintoinen havainto  kaspaasi-3:n aktivoitumisesta infektion varhaisvaiheissa permissiivisissä soluissa, sillä se ei johdakaan  apoptoosiin ja niin on   aivan infektoitumisen myöhäisvaiheisiin asti;  tähän on syynä Dot/Icm:n välittämät antiapoptoottiset signaalit, jotka tekevät  infektoituneet solut  resistenteiksi ulkopuolisille apoptoosin aiheuttajille. Sen takia kaspaasi 1:n ja exekutiivisten kaspaasien ei-apoptoottiset funktiot ovat temporaalisesti ja spatiaalisesti  moduloituja Lpn - infektion aikana, mistä määräytyy permissiivisyys (sallivuus)  solunsisäiseen bakteerireplikoitumiseen.  Artikkelissa  tehdään selkoa L. pneumophilan uusista kaspaasi- aktivoitumisteistä ja pohditaan niiden osuutta geneettisessä restriktiossa ja infektio- permissiivisyydessä.
  • Modulation of caspases and their non-apoptotic functions by Legionella pneumophila.
    Amer AO. Cell Microbiol. 2010 Feb;12(2):140-7. doi: 10.1111/j.1462-5822.2009.01401.x. Epub 2009 Oct 27. Review. PMID: 19863553Legionella pneumophila has become a model system to decipher the non-apoptotic functions of caspases and their role in immunity. In permissive cells, the L. pneumophila-containing vacuole evades endosomal traffic and is remodelled by the endoplasmic reticulum. Evasion of the endosomes is mediated by the Dot/Icm type IV secretion system. Upon L. pneumophila infection of genetically restrictive cells such as wild-type (WT) C57Bl/6J murine macrophages, flagellin is sensed by the NOD-like receptor Nlrc4 leading to caspase-1 activation by the inflammasome complex. Then, caspase-7 is activated downstream of the Nlrc4 inflammasome, promoting non-apoptotic functions such as L. pneumophila-containing phagosome maturation and bacterial degradation. Interestingly, caspase-3 is activated in permissive cells during early stages of infection. However, caspase-3 activation does not lead to apoptosis until late stages of infection because it is associated with potent Dot/Icm-mediated anti-apoptotic stimuli that render the infected cells resistant to external apoptotic inducers. Therefore, the role of caspase-1 and non-apoptotic functions of executioner caspases are temporally and spatially modulated during infection by L. pneumophila, which determine permissiveness to intracellular bacterial proliferation. This review will examine the novel activation pathways of caspases by L. pneumophila and discuss their role in genetic restriction and permissiveness to infection.Similar articles
14.Mitä tarvitaan legionellan restriktioon makrofagissa.
Fortier A, Doiron K, Saleh M, Grinstein S, Gros P. Infect Immun. 2009 Nov;77(11):4794-805. doi: 10.1128/IAI.01546-08. Epub 2009 Aug 31. PMID: 19720760
15. Lisätietoa  NLR reseptorista  NAIP5.
16.
NLR-perheenjäsen NLRC4 eli IPAF omaa CARD-domeenin ja NACHT- domeenin. Intrasellulaari Gram- negat. bakteeri indusoi 1-kaspaasin  IPAF välitteisesti ja infektoituneen makrofagin kuoleman ja proinflammatorisia sytokiineja. ( Useimmat ihmiset eivät sairastu  Legionella-bakteeriin,  kun immuunivaste toimii  normaalisti, tai paremminkin: useimmat ihmiset toipuvat Legionellasta, joka on diagnosoitu).
  • NLRC4/IPAF: a CARD carrying member of the NLR family.Sutterwala FS, Flavell RA. Clin Immunol. 2009 Jan;130(1):2-6. doi: 10.1016/j.clim.2008.08.011. Epub 2008 Sep 25. Review. PMID: 18819842
    The NOD-like receptor (NLR) family of proteins is involved in the regulation of innate immune responses and cell death pathways. Recent findings show that the NLR family member NLRC4 (also known as IPAF) has important roles in innate immune responses to Gram-negative bacteria. Macrophages infected with Legionella pneumophila, Salmonella typhimurium, Shigella flexneri, or Pseudomonas aeruginosa activate caspase-1 in an NLRC4-dependent manner leading to macrophage cell death and the release of proinflammatory cytokines. This review will discuss these findings as well as the role of bacterial type III and type IV secretion systems and flagellin in NLRC4-mediated caspase-1 activation.Free PMC Article Similar articles
17.
18.
Vinzing M, Eitel J, Lippmann J, Hocke AC, Zahlten J, Slevogt H, N'guessan PD, Günther S, Schmeck B, Hippenstiel S, Flieger A, Suttorp N, Opitz B.
J Immunol. 2008 May 15;180(10):6808-15. PMID:18453601
19.
Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G. PLoS Pathog. 2007 Aug 10;3(8):e111. PMID:17696608
20.
TLR5 tunnistaa extrasellularisen flagelliinin ja Ipaf (NLR) tunnistaa  bakteerin, jolla on sekä flagelliinin ja viruseffektoreita.
  •    TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Miao EA, Andersen-Nissen E, Warren SE, Aderem A.
    Semin Immunopathol. 2007 Sep;29(3):275-88. Epub 2007 Aug 10. Review.PMIDAbstractThe innate immune system precisely modulates the intensity of immune activation in response to infection. Flagellin is a microbe-associated molecular pattern that is present on both pathogenic and nonpathogenic bacteria. Macrophages and dendritic cells (DC) are able to determine the virulence of flagellated bacteria by sensing whether flagellin remains outside the mammalian cell, or if it gains access to the cytosol.  Extracellular flagellin is detected by TLR5, which induces expression of proinflammatory cytokines, while flagellin within the cytosol of macrophages is detected through the Nod-like receptor (NLR) Ipaf, which activates caspase-1. In macrophages infected with Salmonella typhimurium or Legionella pneumophila, Ipaf becomes activated in response to flagellin that appears to be delivered to the cytosol via specific virulence factor transport systems (the SPI1 type III secretion system (T3SS) and the Dot/Icm type IV secretion system (T4SS), respectively). Thus, TLR5 responds more generally to flagellated bacteria, while Ipaf responds to bacteria that express both flagellin and virulence factors
21. 
Intrasellulaarisen Legionella pneumophila-kasvun  restriktioon vaaditaan Ipaf:ista riippuva  kaspaasi-1 aktivaatio ja funktionaalinen NAIP5-signalointi.
  • The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation.Lamkanfi M, Amer A, Kanneganti TD, Muñoz-Planillo R, Chen G, Vandenabeele P, Fortier A, Gros P, Núñez G.J Immunol. 2007 Jun 15;178(12):8022-7. PMID: 17548639Abstract Similar to Ipaf and caspase-1, the Nod-like receptor protein Naip5 restricts intracellular proliferation of Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaires' disease. Thus, Naip5 has been suggested to regulate Legionella replication inside macrophages through the activation of caspase-1. In this study, we show that cytosolic delivery of recombinant flagellin activated caspase-1 in A/J macrophages carrying a mutant Naip5 allele, and in C57BL/6 (B6) macrophages congenic for the mutant Naip5 allele (B6-Naip5(A/J)), but not in Ipaf(-/-) cells. In line with these results, A/J and B6-Naip5(A/J) macrophages induced high levels of caspase-1 activation and IL-1beta secretion when infected with Legionella. In addition, transgenic expression of a functional Naip5 allele in A/J macrophages did not alter Legionella-induced caspase-1 activation and IL-1beta secretion. Notably, defective Naip5 signaling renders B6-Naip5(A/J) macrophages permissive for Legionella proliferation despite normal caspase-1 activation. These results indicate that the restriction of intracellular Legionella replication is more complex than previously appreciated and requires both Ipaf-dependent caspase-1 activation as well as functional Naip5 signaling. Free Article Similar articles

Legionellabakteerin vaipan rakenteesta (Envelope)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3129009/
Löysin tämän artikkelin Google hakulaiteella ja siinä on vuodelta 2011  kuvausta vaipan rakenteesta.
Otan sitaatin netistä.
Published online 2011 Apr 25. Prepublished online 2011 Feb 14. doi:  10.3389/fmicb.2011.00074
PMCID: PMC3129009
PMID: 21747794
Virulence Properties of the Legionella Pneumophila Cell Envelope
Tiivistelmästä suomennosta
Bakteerin vaippa  on ratkaisevassa osassa infektiotautioen patogeneesissä. Tässä katsauksessa on yhteenvetoa nykyisestä (2011) tiedosta  legionella pneumophila soluvaipan rakenteesta ja molekulaarisesta koostumuksesta. Käsitellään lipopolysakkaridien (LPS) synteesiä  kalvon ja periplasmisten proteiinien  biologisia aktiivisuuksia ja niiden ratkaisevia funktioita patogeenin ja sen isännän välisessä vuorovaikutuksessa. Bakteerin kiinnittymisen (adheesio) , invasoitumisen ja solun sisällä elossapysymisen lisäksi kiinnitetään erityishuomiota raudanhankintaan, detoksikaatioon, immuunivasteen  avainasemassa oleviin esiinsaajiin ja ulomman rakkulakalvon  erilaisiin  funktioihin. Kirjallisuuden kriittisestä analysoinnista käy ilmi, että  legionellasolupinnan dynamiikka ja fenotyyppinen  plastisuus  erilaisten metabolisten  vaiheiden aikana  vaatii tulevina aikoina  enemmän huomionkiinnittämistä.  Avainsanoja: Legionella pneumophila,bakteerivaippa, fosfolipidit, kalvoproteiinit, LPS, ulkokalvo rakkulat.
  •  Abstract The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future. Keywords: Legionella pneumophila, bacterial envelope, phospholipids, membrane proteins, LPS, outer membrane vesicles.
 Bakteerisolukalvolla on useita perusfunktioita.  Ne suojaavat bakteeria ympäristön aiheuttamilta  vaaroilta. Ne sallivat ravintoaineiden  selektiivisen sisäänpäsyn ja spesifisen jätetuotteiden uloskuljetuksen sekä  eritysjärjestelmän tuotesubstraattien ulospääsyn solusta. Lisäksi ne välittävät suoraa kontaktia muihin organismeihin.  Tämä pitää paikkansa varsinkin patogeenisiin bakteereihin, joiden  usein hyvin spesifiset interaktiot  isäntäorganismin kanssa riippuvat suurelta osalta juuri niiden  pintarakenteista.  Niinpä  Legionella pneumophilan,  fakultatiivisen Gram-negatiivisen intrasellulaarisen  bakteerin kyky aiheuttaa legionalaistautia  on lähinnä  sen soluvaipan kmponenttien ja  ominaisuuksien varqassa. 
Gram-negatiivisten bakteereiden sytoplasmaa (CP)  rajoittaa sisäkalvo (IM). Se on kahden fosfolipidikerroksen muodostama ja siinä on integoituneita ja perifeerisiä  proteiineja ja lipoproteiineja. Se omaa metabolisia entsyymejä, hengitysketjun komponentteja  ja osia koneistosta, joka hankkii rautaa. (Kuva 11) 

  • Bacterial cell envelopes fulfill several basic functions: They protect the bacterium from environmental hazards, they allow a selective passage of nutrients into and a specific export of waste products and secretion system substrates out of the cell. Additionally, they mediate the direct contact with other organisms. This holds particularly true for pathogenic bacteria, whose often highly specific interactions with host organisms depend largely on their surface structures. Accordingly, the ability of the Gram-negative facultative intracellular bacterium Legionella pneumophila to cause Legionnaires’ disease hinges predominantly on the components and characteristics of its cell envelope.The cytoplasm of Gram-negative bacteria is bordered by the inner membrane. It consists of a bilayer of two phospholipid leaflets with integral and peripheral proteins and lipoproteins. It harbors metabolic enzymes, components of the respiratory chain and parts of the iron acquisition machinery (Figure (Figure11).
Kuvassa  on seuraavia  symboleja ja lyhennyksiä:
PAL = peptidoglykaaniin liittynyt lipoprteiini
FeoB=  raudan kuljetuskohta
PlaB = Fosfolipaasi A/lysofosfolipaasi A.
MOMP=  pääasiallinen ulomman kalvon proteiini .
OM = outer membrane, ulompi kalvo; ( ulompi lipidikaksoiskalvo)
IM = inner membrane, sisempi kalvo ( Sisempi lipidikaksoiskalvo) 
Mip =  makrofagi-infektiivisyyden vahvasitaja 
PP = periplasmisia proteiineja

An external file that holds a picture, illustration, etc.
Object name is fmicb-02-00074-g001.jpg...


Periplasma (PP)   sisältää suhteellisen ohuen keroksen peptidoglykaania  ja eri proteiineja. Legionellan peptidoglykaani on vahvasti ristikkäin linkkiytynyttä. Periplasmaan sijoittautuu  monet detoksikoivat entsyymit, jotka pystyvät  tekemään vaarattomaksi  ja hajoittamaan miljöön haitalliset aineet. Legionellan  eritekoneistot, jotka  läpäisevät  kaksi kalvoa, ulottuvat  periplasmisen tilan läpi.

  • The periplasm contains a relatively thin layer of peptidoglycan and different proteins. Legionella peptidoglycan is strongly crosslinked (Amano and Williams, 1983). The periplasm is the location of many detoxifying enzymes which degrade harmful substances from the environment. Secretion machineries which cross two membranes also go through the periplasmic space.
 Ulkokalvo on asymmetrinen ja sen sisempi lehti on lähinnä fosfolipideistä ja ulompi lehti lähinnä lipopolysakakrideista (LPS). Siihen asettuu  proteiineja, joilla on  erilaisia virulenssifunktioita kuten adheesio ( kiinnittyminen)  ja  isäntäsolun  sisään ottaminen. Legionellan LPS omaa  ainutlatuisen  arkkitehtuurin, erityisesti mitä tulee  hydrofobiseen O-antigeeniin.
  • The outer membrane is asymmetric with an inner leaflet of mostly phospholipids and an outer leaflet of mostly lipopolysaccharides (LPS). It harbors proteins with diverse functions in virulence such as adhesion and uptake into host cells. Legionella LPS has a unique architecture, particularly concerning the hydrophobic O-antigen.
 Tietyntyyppiset  pinnan lisukkeet kuten karvat( pili)   ja siimat ( flagella) , joita  baktgeerin motiliteettiin ja patogeenisyyteen  vaaditaan, ankkuroituvat sisäkalvoon ja tunkevat esiin  solunulkoiseen tilavuuteen.
  •  Certain types of surface appendages such as pili and flagella, which are required for bacterial motility and pathogenicity, are anchored in the inner membrane and protrude into the extracellular space (Liles et al., 1998; Stone and Abu Kwaik, 1998; Heuner and Steinert, 2003).
Ulkokalvon komponenttien virulenssiominaisuudet ovat erityisen tärkeitä ulkokalvoperäisissä rakkuloiissa (OMV). Kuten useimmat bakteerit niin Legionellakin  lehteilee näitä OMV-rakkuloita ulkopinnaltaan (OM).  Ulkopintarakkulat ovat pallomaisia ja omaavat (yhden) lipidikaksoiskerroksen ja ulkokerrokselle (OM)  ominaisia komponetteja ja periplasmisia proteiineja.
  • Virulence properties of outer membrane components are particularly important in regard to outer membrane vesicles (OMVs). Like most bacteria, L. pneumophila sheds these vesicles from its outer membrane. OMVs are spherical lipid bilayers and contain outer membrane components and periplasmic proteins.
 L. pneumophila-soluvaipan aktuelli rakenne tutkittiin yksityiskohtaisesti elektronimikroskoopilla (Rodgers et Davey, 1982) pian sen jälkeen, kun bakteeri oli keksitty. Eri menetelmin saatiin visualisoitua  kummatkin kalvot (OM, IM)  sekä peptidoglykaanikerros  ja saatiin elävä kuva kaikista komponenteista, joita nykyään analysoidaan lähinnä biokemiallisesti.  Nämä tutkijat  olivat myös ensimmäisiä osoittamassa  L. pneumophilan OMV- rakkuloiden olemassaolon, vaikka niitä  nimitettiin kupliksi,  "blebs" ja ne selitettiin kondensoituneiksi  karvoihin liittyviksi proteiineiksi tai satunnaisiksi ulkokalvoperäisiksi rakenneproteiineiksi.
  • The actual structure of the L. pneumophila cell envelope was assessed in detail by electron microscopy shortly after the discovery of the bacterium (Rodgers and Davey, 1982). Both membranes and the peptidoglycan layer were visualized by different methods, resulting in vivid images of the components that are, nowadays, analyzed mostly biochemically. The authors are also the first to show the existence of OMVs of L. pneumophila, even though they are termed “blebs” and explained as “condensed pili-related proteins or random structural proteins of the outer membranes.” 
L. pneumophila-morfologian laajan tutkimusken suorittivat Faulkner et Garduno( 2002) . He tekivät hypoteesin useiden moforlogisten varianttein olemassaolosta, ja nisitä jokainen vastasi infektiosyklin  tiettyä kasvufaasia tai  kehitysastetta. Mielenkiintoinen seikka oli, että esitettiin  viisi erilaista vaipparakennetta ja ne vaihtelivat  paksuuden, kalvokerrosluvun ja yksittäisten komponenttien  elektronitiheyden suhteen. Koska  joitakin morfologisia variantteja ilmeni vain intrasellulaarisen kasvun aikana, tutkijat olettivat  näiden varianttein kehityksen riippuvan isäntäsolun metaboliiteista.  Tämä huomio voi selittää sellaisten muotojen puuttuman  nestemäisessä väliaineessa tapahtuvan extrasellulaarisen kasvun aikana. Vielä tarvitsee selityksensä  näyteitten valmistusprosessin vaikutus  näyteissä muodostuviin artefaktoihin.
  • An extensive study of L. pneumophila morphology including envelope architecture was performed by Faulkner and Garduño (2002). They hypothesize the existence of several morphological variants, each corresponding to a certain growth phase or stage of the infection cycle. Interestingly, five different envelope structures are presented which vary in thickness, number of membrane layers, and electron density of individual components. As some of the morphological variants only occurred during intracellular growth, the authors propose that the development of these variants depends on host metabolites. This notion can explain the absence of these forms during extracellular growth in liquid media. The impact of processing artifacts arising during the preparation of the samples, however, remains to be clarified.
 (Tämän artikkelin piiriin ei oteta  muualla tarkoin selvitettyjä  monia sekreetiojärjestelmiä ja ulkokalvon proteiineja, joilla on merkitystä virulenssissa. Tähän    kuuluu T1SS ja kaksois arginiinin translokaatio (Tat) eritys (Lammertyn et Anne, 2004), T2SS (Cianciotto,2009), T4SS ja näihin kuuluvat  vastaavat translokoituneet effektorit ( (Ninio et Roy, 2007). Lopuksi:  erittyneet fosfolipaasit (Pla)  yhdistävät Legionella virulenssin isäntä-lipideihin (Banerji et al. 2008) . Vähemmän huomiota on annettu niille  muille Legionella soluvaipan komponetteille, jotka eivät kuulu edellämainittuihin komplekseihin. Tämä katsaus keskiittyy nihin  kalvokomponentteihin ja miten ne modifioivat  Legionellan virulenssin ominaisuuksia.
  •  Many secretion systems and outer membrane proteins with roles in virulence have been excellently reviewed elsewhere and are not within the focus of this work. This includes T1SS and twin-arginine translocation (Tat) secretion (Lammertyn and Anne, 2004), T2SS (Cianciotto, 2009), T4SS as well as their respective translocated effectors (Ninio and Roy, 2007). Finally, secreted phospholipases connect Legionella virulence to host lipids (Banerji et al., 2008). Less attention was paid to other components of the Legionella cell envelope which are not part of the aforementioned complexes. This review concentrates on these envelope components and how they mediate Legionella virulence properties.
L.pneumophilan sisäkalvo(IM. Alkaen  sisältä ulospäin ensimmäinen kerros sisäkalvoa(IM) on myös sytoplasminen kalvo tqai plasmakalvo nimeltään. Se on lipidikaksoiskerros ja siihen on integroitunut usean systeemin komponetteja, kuten rataa ottava koenisto, hengitysketju ja detoksikaatiojärjestelmä.
  •  The Inner Membrane of L. Pneumophila
    Starting from the inside and proceeding outward, the first layer is the inner membrane, also termed cytoplasmic or plasma membrane. It is a lipid bilayer with integrated components of various systems, including the iron uptake machinery, the respiratory chain, and the detoxification system (Table (Table11).
    ProteinMolecular functionRole in infection/required forReference
    FeoBGTP-dependent Fe(II) transporterMacrophage killing, full virulence in mousePetermann et al. (2010), Robey and Cianciotto (2002)
    IraA/IraBSmall-molecule methyl transferase/ peptide transporterIron uptake, infection of human macrophages, and guinea pigsViswanathan et al. (2000)
    Multi-copper oxidasePotential oxidation of ferrous ironExtracellular replicationHuston et al. (2008)
    LadCPutative adenylate cyclaseAdhesion to macrophages, intracellular replication, putative modification of protein functions via cAMPNewton et al. (2008)
    TatBT2S, additional function(s)Intracellular replication in human macrophages, growth under iron-limiting conditions, cytochrome c-dependent respiration, export of PLC activity to supernatant

onsdag 10 oktober 2018

Legionella genome (PubMed haku)

https://www.ncbi.nlm.nih.gov/pubmed/?term=Legionella+genome
750 vastausta
20 tuoreinta

Watanabe K, Suzuki H, Nishida T, Mishima M, Tachibana M, Fujishima M, Shimizu T, Watarai M.
FEMS Microbiol Ecol. 2018 Nov 1;94(11). doi: 10.1093/femsec/fiy162.
2.
Wells M, Lasek-Nesselquist E, Schoonmaker-Bopp D, Baker D, Thompson L, Wroblewski D, Nazarian E, Lapierre P, Musser KA.
Infect Genet Evol. 2018 Jul 31;65:200-209. doi: 10.1016/j.meegid.2018.07.040. [Epub ahead of print]
3.
Fleres G, Couto N, Lokate M, van der Sluis LWM, Ginevra C, Jarraud S, Deurenberg RH, Rossen JW, García-Cobos S, Friedrich AW.
Microorganisms. 2018 Jul 18;6(3). pii: E71. doi: 10.3390/microorganisms6030071.
4.
Kulkarni P, Olson ND, Paulson JN, Pop M, Maddox C, Claye E, Rosenberg Goldstein RE, Sharma M, Gibbs SG, Mongodin EF, Sapkota AR.
Sci Total Environ. 2018 Oct 15;639:1126-1137. doi: 10.1016/j.scitotenv.2018.05.178. Epub 2018 May 26.
5.
Kenzaka T, Yasui M, Baba T, Nasu M, Tani K.
Biocontrol Sci. 2018;23(2):53-59. doi: 10.4265/bio.23.53.
6.
Nikoh N, Tsuchida T, Maeda T, Yamaguchi K, Shigenobu S, Koga R, Fukatsu T.
MBio. 2018 Jun 12;9(3). pii: e00890-18. doi: 10.1128/mBio.00890-18.
7.
Mylius M, Dreesman J, Pulz M, Pallasch G, Beyrer K, Claußen K, Allerberger F, Fruth A, Lang C, Prager R, Flieger A, Schlager S, Kalhöfer D, Mertens E.
Int J Med Microbiol. 2018 Jul;308(5):539-544. doi: 10.1016/j.ijmm.2018.05.005. Epub 2018 May 29.
8.
  • Legionella pneumophila omaa useita "muonanhankintaan" erikoistuneita kuljettajaproteiineja  
Best A, Jones S, Abu Kwaik Y.
Sci Rep. 2018 May 29;8(1):8352. doi: 10.1038/s41598-018-26782-x.
9.
  •  Legionelloosiongelmat  pysyvät  uutisisia. Instituutioissa ja isoissa rakennuksissa   tällaisten  vesijärjestelmissä pesivien infektioiden estäminen vaatii omat ohjelmansa
Herwaldt LA, Marra AR.
Curr Opin Infect Dis. 2018 Aug;31(4):325-333. doi: 10.1097/QCO.0000000000000468.
Legionellosis remains an important public health threat. To prevent these infections, staff of municipalities and large buildings must implement effective water system management programs that reduce Legionella growth and transmission and all Medicare-certified healthcare facilities must have water management policies. In addition, we need better methods for detecting Legionella in water systems and in clinical specimens to improve prevention strategies and clinical diagnosis.
10.
  • Legionella pneumophila omaa ihmismitokondrian poriinin kaltaisen, jännitteestä riippuvan joniselektiivisen proteiinin, Lpg1974.  Se voi muodostaa lipidikaksoiskalvoon jonia selektiivisesti läpäisevän aukon. 
Younas F, Soltanmohammadi N, Knapp O, Benz R.
Biochim Biophys Acta Biomembr. 2018 Aug;1860(8):1544-1553. doi: 10.1016/j.bbamem.2018.05.008. Epub 2018 May 19.Abstract
.... Genome analyses have shown the presence of genes coding for eukaryotic like proteins in several Legionella species. The presence of these proteins may assist L. pneumophila in its adaptation to the eukaryotic host. We studied the characteristics of a protein (Lpg1974) of L. pneumophila that shows remarkable homologies in length of the primary sequence and for the identity/homology of many amino acids to the voltage dependent anion channel (human VDAC1, Porin 31HL) of human mitochondria. Two different forms of Lpg1974 were overexpressed in Escherichia coli and purified to homogeneity: the one containing a putative N-terminal signal sequence and one without it. Reconstituted protein containing the signal sequence formed ion-permeable pores in lipid bilayer membranes with a conductance of approximately 5.4 nS in 1 M KCl. When the predicted N-terminal signal peptide of Lpg1974 comprising an α-helical structure similar to that at the N-terminus of hVDAC1 was removed, the channels formed in reconstitution experiments had a conductance of 7.6 nS in 1 M KCl. Both Lpg1974 proteins formed pores that were voltage-dependent and anion-selective similar to the pores formed by hVDAC1. These results suggest that Lpg1974 of L. pneumophila is indeed a structural and functional homologue to hVDAC1.
11.
  • Neljä bakteerisukua jolla on T4SS 
Esna Ashari Z, Dasgupta N, Brayton KA, Broschat SL.
PLoS One. 2018 May 9;13(5):e0197041. doi: 10.1371/journal.pone.0197041. eCollection 2018.
A thorough literature search was performed to find features that have been proposed. Feature values were calculated for datasets of known effectors and non-effectors for T4SS-containing pathogens for four genera with a sufficient number of known effectors, Legionella pneumophila, Coxiella burnetii, Brucella spp, and Bartonella spp. The features were ranked, and less important features were filtered out.
12.
  • Ensimmäinen metagenominen tutkimnus Karachin juomavesisysteemistä.
Saleem F, Mustafa A, Kori JA, Hussain MS, Kamran Azim M.
Microb Ecol. 2018 Apr 24. doi: 10.1007/s00248-018-1192-2. [Epub ahead of print]The present metagenomic analysis of DWSS of Karachi has allowed the evaluation of bacterial communities in source water and the water being supplied to the city. Moreover, measurement of heavy metals in water samples from Karachi revealed arsenic concentration according to WHO standards which is in contrast of recent study which reported extensive arsenic contamination in aquifers in the Indus valley plain. To the best of our knowledge, this is the first metagenomic study of DWSS of Karachi.
13.
  • Legionella pneumophila eristyksiä 2000-2012 Kanadasta. 
Fortuna A, Ramnarine R, Li A, Fittipaldi N, Frantz C, Mallo GV.
Genome Announc. 2018 Apr 12;6(15). pii: e00295-18. doi: 10.1128/genomeA.00295-18.
15.
  • Eritrean kuumien lähteiden patogeeneissa Legionellaa 
Ghilamicael AM, Boga HI, Anami SE, Mehari T, Budambula NLM.
PLoS One. 2018 Mar 22;13(3):e0194554. doi: 10.1371/journal.pone.0194554. eCollection 2018.
 Human pathogens can survive and grow in hot springs. For water quality assessment, Escherichia coli or Enterococci are the main thermotolerant enteric bacteria commonly used to estimate the load of pathogenic bacteria in water. However, most of the environmental bacteria are unculturable thus culture methods may cause bias in detection of most pathogens. Illumina sequencing can provide a more comprehensive and accurate insight into environmental bacterial pathogens, which can be used to develop better risk assessment methods and promote public health awareness. In this study, high-throughput Illumina sequencing was used to identify bacterial pathogens from five hot springs; Maiwooi, Akwar, Garbanabra, Elegedi and Gelti, in Eritrea. Water samples were collected from the five hot springs. Total community DNA was extracted from samples using the phenol-chloroform method. The 16S rRNA gene variable region (V4-V7) of the extracted DNA was amplified and library construction done according to Illumina sequencing protocol. The sequence reads (length >200 bp) from Illumina sequencing libraries ranged from 22,091 sequences in the wet sediment sample from Garbanabra to 155,789 sequences in the mat sample from Elegedi. Taxonomy was assigned to each OTU using BLASTn against a curated database derived from GreenGenes, RDPII, SILVA SSU Reference 119 and NCBI. The proportion of potential pathogens from the water samples was highest in Maiwooi (17.8%), followed by Gelti (16.7%), Akwar (13.6%) and Garbanabra (10.9%). Although the numbers of DNA sequence reads from Illumina sequencing were very high for the Elegedi (104,328), corresponding proportion of potential pathogens very low (3.6%). Most of the potential pathogenic bacterial sequences identified were from Proteobacteria and Firmicutes. Legionella and Clostridium were the most common detected genera with different species. Most of the potential pathogens were detected from the water samples. However, sequences belonging to Clostridium were observed more abundantly from the mat samples. This study employed high-throughput sequencing technologies to determine the presence of pathogenic bacteria in the five hot springs in Eritrea.
16.
David S, Mentasti M, Parkhill J, Chalker VJ.
Clin Microbiol Infect. 2018 Sep;24(9):1020.e1-1020.e4. doi: 10.1016/j.cmi.2018.03.004. Epub 2018 Mar 13.
17.
  • Legionellan effektoreissa on LotA, deubikikiinaasi.
Kubori T, Kitao T, Ando H, Nagai H.Cell Microbiol. 2018 Jul;20(7):e12840. doi: 10.1111/cmi.12840. Epub 2018 Apr 6.... Many effector proteins are expected to be involved in biogenesis and regulation of the Legionella-containing vacuole (LCV) that is highly decorated with ubiquitin. Here, we identified a Legionella deubiquitinase, designated LotA, by carrying out a genome analysis to find proteins resembling the eukaryotic ovarian tumour superfamily of cysteine proteases. LotA exhibits a dual ability to cleave ubiquitin chains that is dependent on 2 distinctive catalytic cysteine residues in the eukaryotic ovarian tumour domains. One cysteine dominantly contributes to the removal of ubiquitin from the LCVs by its polyubiquitin cleavage activity. The other specifically cleaves conjugated Lys6-linked ubiquitin. After delivered by the Type 4 secretion system, LotA localises on the LCVs via its PI(3)P-binding domain. The lipid-binding ability of LotA is crucial for ubiquitin removal from the vacuoles. We further analysed the functional interaction of the protein with the recently reported noncanonical ubiquitin ligases of L. pneumophila, revealing that the effector proteins are involved in coordinated regulation that contributes to bacterial growth in the host cells.
18.
  • Legionella sainthelensi aiheuttaa vaikeaa pneumoniaa. Genomi selvitetty Uudessa Seelannissa.
Genome Announc. 2018 Feb 1;6(5). pii: e01588-17. doi: 10.1128/genomeA.01588-17.Legionella sainthelensi is an aquatic environmental bacterium that in humans can cause Legionnaires' disease (LD), an often severe form of pneumonia. Here, we report the first complete genome of a L. sainthelensi clinical isolate obtained in 2001 from a patient with LD in Canterbury, New Zealand.
Currently, there are two draft genome sequences for the ATCC 35248 type strain, which are the environmental isolates obtained near the Mt. St. Helens volcano (GenBank accession numbers NZ_JHXP00000000 and NZ_LNYV00000000).
19.
  • Neljä  L. pneumophila alalajia: pneumophila, fraseri, pasculleri , raphaeli. 
Kozak-Muiznieks NA, Morrison SS, Mercante JW, Ishaq MK, Johnson T, Caravas J, Lucas CE, Brown E, Raphael BH, Winchell JM.
Infect Genet Evol. 2018 Apr;59:172-185. doi: 10.1016/j.meegid.2018.02.008. Epub 2018 Feb 7.
Highlights  Previously, it was demonstrated that L. pneumophila consists of three subspecies: pneumophila, fraseri and pascullei.
A set of 38 complete L. pneumophila genomes was analyzed. Four distinct subspecies, including the novel subsp. raphaeli, were identified. ANI values show unusually large genomic distances among subspecies. Subspecies-specific SBT consensus patterns were determined. A panel of subspecies-unique genes can be used for testing and classification.

20.
  • Legionellojen fylogeneettisestä puusta